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Based on an effective nucleon-nucleon interaction, a microscopic cluster model of the nucleus-
nucleus bremsstrahlung, including implicitly a part of the effects of meson-exchange currents via
an extension of the Siegert theorem is applied to the α+ p and α+n systems. The contributions of the
E1 and E2 transitions to the bremsstrahlung cross sections are evaluated and their relative importance
for the mirror systems α + p and α + n are compared. Another approach based on realistic nucleon-
nucleon and nucleon-nucleon-nucleon interactions and the No-Core Shell Model/Resonating-Group
Method is also investigated. Some preliminary results for the α + p bremsstrahlung are displayed.
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1. Introduction

Nucleus-nucleus bremsstrahlung is a radiative transition between continuum states where the
photon emission is induced by a nuclear collision. Interest in this process has recently been re-
vived by the experimental study of electromagnetic transitions in the unstable 8Be via the α + α
bremsstrahlung [1] and by the perspective of using the t(d, nγ)α bremsstrahlung to diagnose plasmas
in fusion experiments [2].

The study of the α + N bremsstrahlung is motivated by several reasons. First, it makes possible a
direct comparison between theory and experiment since the α + p system is one of the few light-ion
systems for which bremsstrahlung cross sections were measured [3]. Second, the α+n bremsstrahlung
is a necessary preliminary step to the study of the t(d, nγ)α bremsstrahlung since it describes the final
channel. Finally, the α+ N elastic scattering is very well described by the microscopic cluster models
and the more complex but more fundamental ab initio methods [4].

The description of the electromagnetic transitions in nuclear systems is based on the interaction
between the electromagnetic field of the photon and the nuclear current, which is due to the motion
of the nucleons and also to the motion of the mesons, responsible for the nucleon-nucleon (NN) in-
teraction and nucleon-nucleon-nucleon (NNN) interactions. However, the contribution of the meson-
exchange currents was neglected in most previous studies of nucleus-nucleus bremsstrahlung. Re-
cently, it has been proposed [5] to include partially the meson-exchange currents in the bremsstrahlung
models by using an extended version of the Siegert theorem [6], which does not rely on the long-
wavelength approximation (LWA). This approach has been applied as well in microscopic mod-
els [5,7] as in potential models [8]. It has to be noted that the LWA cannot be made in the continuum-
to-continuum transitions because it leads to divergent matrix elements of the electric transition multi-
pole operators and thus, divergent bremsstrahlung cross sections, since the initial and final states are
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not square-integrable.
In addition to the implicit inclusion of the meson exchange currents, using the extended Siegert

theorem reduces the complexity of the calculations, making easier the development of ab initio
bremsstrahlung models.

2. The α + N bremsstrahlung cross section

An α particle and a nucleon collide at the initial relative momentum pi = ~ki in the z direction
and relative energy Ei = p2

i /2µM where µM is the reduced mass of the system. After emission of a
photon with energy Eγ = ~kγc, the system has a final relative momentum p f = ~k f in the direction
Ω f = (θ f , ϕ f ) and a relative energy E f = p2

f /2µM, which satisfies

E f = Ei − Eγ, (1)

where the small recoil energy is neglected. The α particle is assumed to be in its ground state before
and after the photon emission. Its spin is zero. The spin projection of the nucleon before and after the
collision, denoted respectively νi and ν f , can be different.

The bremsstrahlung cross section is evaluated from the multipole matrix elements, which are pro-
portional to the matrix elements of the electromagnetic transition multipole operatorsMσ

λµ between

the incoming initial state Ψ
νi+
i in the z direction with energy Ei and the outgoing final state Ψ

ν f−

f (Ω f )
with energy E f and direction Ω f ,

uσνiν f
λµ (Ω f ) = ασλ 〈Ψ

ν f−

f (Ω f )|Mσ
λµ|Ψ

νi+
i 〉, (2)

where σ = E corresponds to an electric multipole and σ = M corresponds to a magnetic multipole
and ασλ is given by

αE
λ = −iαM

λ = −

√
2π(λ + 1)iλkλγ

√
λ(2λ + 1)(2λ − 1)!!

. (3)

Assuming that the photon helicity and the final spin projections are not observed and that the incident
beam is unpolarized, the angle-integrated bremsstrahlung cross section is given by [7]

dσ
dEγ

=
Eγp2

f

2π2~5c4πε0

∑
νiν f

∑
σλµ

∫ π

0

|uσνiν f
λµ (θ f , 0)|2

2λ + 1
sin θ f dθ f . (4)

The explicit form of the electric transition multipole operatorsME
λµ in the Siegert approach for a mi-

croscopic model can be found in [7]. The contribution of the magnetic transitions, which is expected
to be weak for the α + N bremsstrahlung at low photon energy, is neglected.

3. Microscopic approaches

The microscopic description of the α + N systems relies on the internal 5-body Schrödinger
equation

HΨ = ET Ψ, (5)

where H is the microscopic internal Hamiltonian, Ψ is the internal wave function, and ET is the total
energy of the system in the center-of-mass (c.m.) frame. The microscopic internal Hamiltonian H is
given by

H =

5∑
i=1

p2
i

2mN
+

5∑
i> j=1

vi j +

5∑
i> j>k=1

vi jk − Tc.m., (6)
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where pi is the momentum of nucleon i, mN is the nucleon mass, vi j and vi jk are the two- and three-
body potentials describing the NN and NNN interactions between nucleons i and j or i, j, and k, and
Tc.m. is the c.m. kinetic energy.

The initial and final states Ψ
νi+
i and Ψ

ν f−

f in Eq. (2) are solutions of the Schrödinger equation (5)
corresponding to relative energies Ei and E f , respectively, and having the appropriate asymptotic
behavior of an incoming or outgoing wave function. These states are described following two differ-
ent approaches: an effective cluster approach, namely the Generator Coordinate Method (GCM) [9],
and a more realistic cluster approach, namely the No-Core Shell Model/Resonating-Group Method
(NCSM/RGM) [10]. In the GCM, the α cluster wave function is simply the internal wave function of
the α ground state within the harmonic oscillator shell model. In the NCSM/RGM, the α cluster wave
functions are NCSM solutions of the 4-nucleon Schrödinger equation, where the same inter-nucleon
interaction as in Eq. 6 is considered. In both approaches, the Microscopic R-matrix Method [11, 12]
is used to enforce the expected asymptotic behavior of the collision wave function.

The inter-nucleon potentials vi j and vi jk must be adapted to the considered approach. In the GCM
approach, an effective NN interaction, the Minnesota potential [13] complemented by the Coulomb
potential, is used. No three-body potential is included. By adjusting the exchange parameter and the
spin-orbit strength of the Minnesota potential, the GCM reproduces nicely the experimental elastic
phase shifts. In the NCSM/RGM approach, a version of the NN interaction from the chiral effective
field theory at next-to-next-to-next-to-leading order [14] complemented by a local form of the chiral
NNN interaction at next-to-next-to-leading order [15] is first softened by the similarity renormaliza-
tion group and then, applied in the calculations. More details can be found in [4].

4. Results

The E1 contributions to the angle-integrated bremsstrahlung cross sections at a photon energy
Eγ = 1 MeV for the α + p system in the GCM [7] and NCSM/RGM approaches and for the α + n
system in the GCM approach [7] are displayed in Fig. 1. Technical details about the GCM calculations
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Fig. 1. The E1 contributions to the angle-integrated
bremsstrahlung cross sections at a photon energy Eγ =

1 MeV for the α + p system in the GCM [7] and
NCSM/RGM approaches and for the α + n system in
the GCM approach [7].
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Fig. 2. The E2 contributions to the α + p and α +

n angle-integrated bremsstrahlung cross sections at a
photon energy Eγ = 1 MeV in the GCM approach [7].
The α+n bremsstrahlung cross sections are multiplied
by 81.

can be found in [7]. The peaks in the bremsstrahlung cross sections are at energies which correspond
to the final states at the 3/2− resonance energies. The peak is at higher energy for for the α+ p system
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than for the α+n system since the 3/2− resonance energy is higher for α+ p system than for the α+n
system. Off-resonance, the α + p and α + n bremsstrahlung cross sections are nearly the same.

The E2 contributions are calculated in the GCM approach for the α + N systems at the same
photon energy (Eγ = 1 MeV) and are displayed in Fig. 2. For both systems, but especially for the
α + n system, the E2 transitions are much weaker than the E1 transitions. The ratio of the orders of
magnitude of the electric transition contributions between the α + p and α + n bremsstrahlungs is
roughly estimated by the square of the ratio of the effective charges of the α + p and α + n systems
which is 1 for the E1 transitions and 81 for the E2 transitions [7].

For the α + p system, the E1 contributions to the angle-integrated bremsstrahlung cross sec-
tions, at Eγ = 1 MeV, are calculated in the NCSM/RGM approach, too. The maximum number of
quanta in the harmonic oscillator basis considered in this model is 13 and the oscillator frequency is
20 MeV/~. The inter-nucleon potentials have been softened to minimize the influence of momenta
larger than 2.0 fm−1. Contrary to the study of the α + p elastic scattering performed in [4], only the
cluster states including the ground state of the α particle are considered here. At Eγ = 1 MeV, the
α+ p bremsstrahlung cross sections have the same order of magnitude in the GCM and NCSM/RGM
approaches. The differences in the bremsstrahlung cross sections are probably due, for most part, to
the differences in the α + p elastic phase shifts obtained with these approaches. Indeed, by consid-
ering only the ground state of the α particle in the NCSM/RGM basis, the α + N elastic resonances
are not well reproduced by the NCSM/RGM. However, the agreement between the theoretical and
experimental elastic phase shifts can be improved by increasing the number of configurations in the
NCSM/RGM and/or including 5-nucleon NCSM states in the description of the colliding wave func-
tions, like in the NCSM with continuum approach [16]. This work is in progress and should lead to
more precise bremsstrahlung cross sections.
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[15] P. Navrátil, Few-Body Syst. 41 (2007) 117.
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